INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 2381-2399

A moving conducting crack at the interface of two
dissimilar piezoelectric materials

X. Wang *, Z. Zhong, F.L. Wu

Key Laboratory of Solid Mechanics of MOE, Department of Engineering Mechanics and Technology,
Tongji University, Shanghai 200092, PR China

Received 19 August 2002

Abstract

The problem of a Yoffe-type conducting crack moving with a constant velocity at the interface of two dissimilar
piezoelectric half planes is investigated by employing complex variable method. Solutions for the complex potentials are
derived. Explicit expressions for the field components on the interface are presented based on the obtained complex
potentials. It is observed that the nature of the field singularities near the crack tip is intimately dependent on the crack
moving velocity. In the extremely low speed regime, the singularities are 6 = —1/2 +ig; in the low speed regime, the
singularities are 0 = —1 % i¢,; in the intermediate speed regime, the singularities are 6 = —1/2 £ k; in the high speed
regime, the singularities are 6 = —1 % ie3; in the extremely high speed regime, the singularities are 6 = —1/2 =+ igg.
¢ (i =1-4) and k are also explicitly given. A Yoffe-type moving conducting crack in a homogeneous piezoelectric
material is treated as a special case. The numerical results demonstrate that the moving velocity V will exert a significant
influence on the value of the singularities, and on the field component distributions along the interface.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A Yoffe-type moving crack in piezoelectric materials has been considered by several investigators (see for
example Chen and Yu, 1997, 1999; Chen et al., 1998; Li et al., 2000; Kwon et al., 2000; Li and Weng, 2002)
to probe the effect of crack moving velocity on the electromechanical coupling response of smart systems
made of piezoelectric materials. The main results from these investigations are

o Stresses and electric displacements exhibit inverse square root singularities near the tip of a crack in
a homogeneous piezoelectric material (Chen and Yu, 1997; Kwon et al., 2000), or at the piezoelectric
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bimaterial interface (Chen et al., 1998; Li et al., 2000), or in a functionally graded piezoelectric material
(Li and Weng, 2002);

e The stress and electric displacement intensity factors are independent of the crack moving velocity and
material constants for a crack in a homogeneous piezoelectric plane, otherwise they will rely on the crack
moving velocity and material constants.

The electrical boundary conditions on the crack surfaces in the above listed studies were assumed to be
impermeable (insulating) or permeable. The conducting cracks in piezoelectric materials are also an im-
portant failure mode (Suo, 1993; Li and Mataga, 1996; Ru, 1999; Wang and Zhong, 2002), and possess
some unique interesting features (Li and Mataga, 1996; Wang and Zhong, 2002). To the best of the authors’
knowledge, the problem of a moving conducting crack of Yoffe-type in piezoelectric materials has not yet
been resolved. Therefore, we will consider a Yoffe-type moving conducting crack at the piezoelectric bi-
material interface. The holomorphic function vectors characterizing the electroelastic fields in the bima-
terials are derived. Field component distributions on the interface are presented from the obtained analytic
function vectors. It is observed that the nature of the singularities is dependent on the crack moving velocity.
The field components exhibit the oscillatory singularities —1/2 4 ie; when the crack moving velocity is
within the extremely low speed regime. The field components exhibit the singularities —1 4 ig, when the
crack moving velocity is within the low speed regime. The field components exhibit the real power type
singularities —1/2 + & when the crack moving velocity is within the intermediate speed regime. The field
components exhibit the singularities —1 4 ig3 when the crack moving velocity is within the high speed re-
gime. The field components exhibit the oscillatory singularities —1/2 =+ ie, when the crack moving velocity
is within the extremely high speed regime. The real constants ¢, &, k, &3, &, which are explicitly given,
depend on the crack moving velocity and electroelastic constants of the bimaterials. The problem of a
Yoffe-type moving conducting crack in a homogeneous piezoelectric material is considered as a special case
of this research, and stress and electric field intensity factors are introduced to characterize the inverse
square root singular field near the crack tips. The numerical results indicate that the crack moving velocity
will exert a significant influence on the singularities, and on the field component distributions along the
bimaterial interface.

2. Basic equations and boundary conditions

Consider a crack of fixed length 2a moving with a constant velocity V' along the interface of two dis-
similar piezoelectric half planes, as shown in Fig. 1. This type of crack is the so-called Yoffe-type moving
crack (Yoffe, 1951; Li and Weng, 2002). Both the upper half plane, denoted by #1, and the lower half plane,
denoted by #2, are transversely isotropic with the poling direction parallel to the x3;-axis. Under anti-plane
mechanical loading and in-plane electric loading, the governing field equations and the constitutive
equations can be simplified considerably as

—governing field equations:

w

0311 +032A2:P¥, Eyy —Ei,=0 (1)

—linear, piezoelectric constitutive equations:
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Fig. 1. A crack moving at the interface of two dissimilar piezoelectric materials.
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where cy, e;s, €11 are the elastic stiffness, the piezoelectric constant and the dielectric permittivity, res-
pectively, a31, 03, are the stress components, £, E, are the electric field components, p is the mass density,
w is out of plane displacement, and the function ¢ is defined in terms of the electric displacements as

follows:

Dy=¢,, Di=-¢, 3)
Substitution of Egs. (2a) and (2b) into (1) will yield the following canonical form:
1 O®w
2 _
VW=G% (4)
Vip=0

where V? = (0?/0x7) + (0%/0x3) is the two-dimensional Laplacian operator, and s is the speed of the piezo-
electrically stiffened bulk shear wave given by

s:f% (s)

where ¢4y = cs + €35/e1; is the piezoelectrically stiffened elastic constant.
Since the discussed problem is in a steady state, the Galilean transformation can be conveniently in-
troduced as follows:
x=x1—WV, y=x3, z=2x3 (6)
Then (4) can be cast into the form:
2w Ow_ o P Do (7)
o . Oy?

where

B=T= 773 (8)
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The general solutions to (7) are
U= {ﬂ = Im{f(2)}

where f(z) = [fi(z1) f2(2)]", and z; = x + ify, z = x + iy.
The stresses and electric fields can be expressed in terms of f(z) as follows:

03

E1:| = Re
-631
_E2:| Im

= Re{Cf'(2)}

Due to the linear property, the principle of superposition can be used here and the solution can be
represented as the sum of a uniform electroelastic field in the uncracked piezoelectric bimaterials and the
disturbance field caused by the moving conducting crack. The boundary and continuity conditions for this
disturbance problem are

6(312) (x, 0+) =0

E§1>(x’ 0+) =

EP(x,07) = —E¥,

1 2 _
o (x,0%) = 613 (x,07),

1 2 _
Vgl>(x7 07) = yg1>(x70 )s

E\(x,0") = EP(x,07),

Dgl)(x, 0") =
o
D(l) _ D(_Z) -0

x+iy] — o0

where the superscripts “(1)”” and “(2)”” denote the physical quantities pertaining to the upper half plane and
the lower half plane, respectively. In the following analysis, the quantities in the upper half plane #1 and the
lower half plane #2 will be identified by the subscripts 1 and 2, respectively. When analyzing this boundary
value problem, it is more convenient to replace z; by z. When calculating electroelastic field from (9) and
(10a) and (10b), it is needed to reinterpret z by z; accordingly.

3. Exact solution

The continuity conditions of tractions and tangential electric field across the total real axis can be ex-

pressed as

Cif}"(x) + Cif} (x) = Cofy (x) + Cofy (x),

—o0 < Xx < +00
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It follows from the above condition that

fi(2) = C,'Cifi(2), fi(2) = C/'Gofy(2) (19)

Meanwhile, the continuity conditions of out of plane displacement and normal electric displacement on the
bonded part of the interface (14) and (16) can be expressed as

() =17 (1) = £, (x) £, (x), [[>a (20)

Inserting the relationships (19) into (20) will result in
(e +e)arm= (e + e et W, 1i>a a1

In view of the above relationship, we can introduce an auxiliary function vector h(z) defined by

C[MGf(z), y>0
h(z) = {Mczf; ), 720 (22)

where the 2 x 2 Hermitian matrix M is given by

M iM AT

M:[—m}]lz lezz]:cll+ 3 (23)

with the three real constants M, M, and M, given by
” 1 1 N 1 1
1n=-7
ey BY — (") el B — (k)
VD B

A@_M—MW 5O _ (k) (24)
2 1
e A A

where k) = 4/ (9(12)2 /(@0e"), (i = 1,2) are the electromechanical coupling factors.
The traction and tangential electric displacement conditions on the crack surfaces (11) and (12) can be
expressed in terms of the above newly introduced function vector h(z) as

M 'h'(x) + M 'h (x) = 2T, |x|<a (25)
where
_ | %%
[

In order to solve the above Riemann—Hilbert problem of vector form, we consider the following ei-
genvalue problem:

(M + My =0 (27)

The nature of ¢ will depend on the crack moving velocity ¥, which can be classified into the following
five speed regimes:



2386 X. Wang et al. | International Journal of Solids and Structures 40 (2003) 2381-2399

e Extremely low speed regime
The crack moving velocity in this regime satisfies the following restriction:

0<V < min {cég), c{fg)} (28)
where cffé =s0y/1 = (k")* (i=1,2) are the Bleustein-Gulyaev wave speeds (Bleustein, 1968; Gulyaev,
1969) of the two phases.

e Low speed regime
The crack moving velocity in this regime satisfies the following restriction:

min {cég, cf)g } < V< min{W, h} (29)
where V; is determined by the following equation:

2
POV
no=sh |1 ( 2) 11 (30)

A \dT

where y (0 < y < 1) is the real root of the following quadratic algebraic equation:

=20+ (b =)y = 2my +my =0 (31)

with
2 | 2
yy = ) eﬁ’ N 5 Gl Wy B (32)
(5@)" = (s0) \ el 7 (@) = () \ef)) + a1}
and J; is determined by the following equation:
1 (1)y2 Eﬁ) 2)\2 ’
o= (s |1 =97 (k) i (k) (33)
44

where y (0 <y < 1) is the real root of the following quadratic algebraic equation:

2 2 2 2
(1) (@) (2) ()2 _ (4(21? (@)
Cus Cus 044 [Eiz)(kgl)) +e? (k(z ) } Cus

Cyy

If there is no root of (34), which satisfies 0 < y < 1, then
¥, =min {sV, 5@} (35)

e Intermediate speed regime
The crack moving velocity in this regime satisfies the following restriction:

min{V, ¥} < V< max{W, >} (36)
e High speed regime

The crack moving velocity in this regime satisfies the following restriction:

max{", 15} < V< min{ max {c\”, ¢ L min {s1,s® 37
bg » “bg
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e Extremely high speed regime
The crack moving velocity in this regime satisfies the following restriction:

min { max {cgg), cl(fg) }, min {s'"), s<2)}} < V< min {5, s?} (38)
In the following, the five speed regimes will be discussed one by one.

3.1. Extremely low speed regime

It can be easily checked that the following conditions hold for the components of M:

My >0, My>0, MMy > M, (39)
Then ¢ in (27) can be explicitly determined to be
5= —L+ie (40)
where
1. 1+ M,
g=—h——, Lh=——— (J4]<1 41
! 2n 1 7)»1 ! M11M22 (| 1| ) ( )
The necessary and sufficient condition for the absence of oscillatory index ¢; is
2 ¢4 €05 _ i) i )y 45
/3()@‘1‘(1—ﬁ())@zﬁ()w‘i‘(l—ﬁ())w (42)
€is én €is &

It is observed that the above condition is dependent on the crack velocity, the elastic constants, the
piezoelectric constants, and the dielectric constants of the bimaterials. When V' =0, i.e., ﬁ(l) = [3(2) =1,
expression (42) will reduce to the condition for a static interface conducting crack (Wang and Zhong, 2002).
It is also apparent that when V = min{cgg), cl(fg)}, the upper limit of this speed regime, ¢ will get to infinity.

The eigenvector v associated with 6 = —1 +ig; is

My, }
v=. 43
2 #3)
Now we introduce the following coordinate transformation:
h(z) =Ph(z), T, =APT (44)
where
o \/Mll \/M]] o 1 —11 0
E[iMﬁh@E’ A=10 144 (45)
Then (25) can be decoupled in the new coordinate system as
h*(x) + A4h (x) =T, [ <a (46)
where
e—Znal 0
Al = |: 0 eZm:]:| (47)

Consequently, the explicit expression of h(z) can be obtained as

z + 2lag; 0

m@:mb—x@{ 0 Z_mmHa+A)MEh‘ (48)
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where

Xl(z) =

(z+a) "z —a) P 0
0 (z + a)fém1 (z — a)7%7i£1 1
Applying (22), the explicit expressions for f)(z), f,(z) are
z + 2lag; 0
0 z — 2dag,
z + 2lag, 0
0 z — 2lag

fi(z) = C;'M'P, {I—Xl(z)[ H(I+A1)1A1P1TT

fi(z) = C;'M P, [I—Xl(z)[ H(H—AI)_IAIFITT

Integrating (50), we arrive at expressions for f,(z), f2(2):
fi(z) = C;'M Py [ — (22 — D)X, (2)](T+ A,) AP, T
fy(z) = C;'M Py — (22 — )X (2)](T+ A,) AP, T

3.2. Low speed regime

It can be easily verified that the following conditions hold for the components of M:

My <0, My <0, M;My<M}
Then ¢ in (27) can be explicitly determined to be
0=—1=1g
where

1 L+1 M,
2N 2T . B

Now we introduce the following coordinate transformation:

h(z) = Poh(z), T,=AP,T

where

P, — v —Mi; v —Mi; A — — 1—/12 0
T VM, i Mn | T 0 I+4h

Then (25) can be decoupled in the new coordinate system as
h*(x) + Ah (x) =T, |x]<a

where

6—27182 0
A2 = - |: 0 e2m:2:|

Consequently, the explicit expression of h(z) can be obtained as

h(z):PZ[I—X2(2)[2+(2i0_1)a82 Z_(ziil)a@”(um)IAZFET
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where
k- [ et 0]
0 (z4a)?(z—a) '
Applying (22), the explicit expressions for f}(z), f(z) are

z+ (21 — 1ae, 0

0 z— (214 1)ae,
z+ (21 — 1)ag, 0

0 z—(2i+ l)ae,

Integrating (61), we arrive at expressions for f(z), f5(z):

fi(z) = C;'M'P, [IXZ(Z){ ”(I+A2)‘A2P§T

fi(z) = C,'M P, [1 —Xz(z)[ ” (I+ 4y) ' AP, T

fi(z) = C;'M Pyl — (22 — )X (2)] (T + Ay) ' AP, T
f2(z) = C;'M 'Pofzd — (22 — )X (2)] (1 + Ay) ' AP, T

3.3. Intermediate speed regime

In this regime, the following condition holds for the components of M:

MMy <0
Then ¢ in (27) can be explicitly determined to be
d=—1+tk
where
= tan~!(43) i — M,
T VMM

Now we introduce the following coordinate transformation:

= =T
h(Z) = P3h(2), T3 = A3P3T

where
P. — V=M =M As = — 0 1 —i}g
} VMy My | 1+i4; 0

Then (25) can be decoupled in the new coordinate system as
h*(x)+ Ash (x) =T;, x| <a

where
o2k 0
A3 = [ 0 ek
Consequently, the explicit expression of h(z) can be obtained as

2ak 0 g
h(z) = P; [I—Xg(z) [Z+0a z—2ak”(I+A3) APTT

2389

(60)
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where

X3(z) =

G+a) FE—a)y Pt 0 ]
0 (z+a) " (z—a) "

Applying (22), the explicit expressions for f)(z ) f,(z) are
+ 2ak _
fl] (Z) = C;lM_lP3 |:I—X3(Z) |:Z “ :|:| I+A3 A3P—§T
z— 2ak
_ + 2ak _
£z)=C'M P |1-X(2)| " 1+ 45) AP T
z — 2ak

Integrating (72), we arrive at expressions for f,(z), f2(2):
f1(z) = C;'M Py — (22 — @)X (2)| (1 + 45) ' AP T
fy(z) = C;'M 'Ps[d — (2 — &)X3(2)] (1 + 45) ' AP, T

3.4. High speed regime

It can be easily verified that the following conditions hold for the components of M:

My >0, My >0, MiMp< M,
Then ¢ in (27) can be explicitly determined to be

5:—1ii83
where
1 Ay +1 N Mi»
S I e PR - TP
“ n}~4—1 M My My (Ial > 1)

Now we introduce the following coordinate transformation:

h(z) = Ph(z), T,=AP,T

where
_ | VMu VM A, — 1 — 74 0
YT iMy —iMy |t TR 0 1+

Then (25) can be decoupled in the new coordinate system as
h*(x) + Ash (x) =Ty, x| <a

where

6—27[63 0
Ay =— |: 0 e2TE83:|

Consequently, the explicit expression of h(z) can be obtained as
h(Z):P4|:I—X4(Z)[Z+(2l+1)a83 0

1, =T
0 z—(zi—l)a83”(”/1“) AT

(79)

(80)
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where
—iey o —1+ie3
X4(Z) = |:(Z * a) (Z a) ie3 0 —1—ie3 :| (82)
0 (z+a)?(z—a)
Applying (22), the explicit expressions for f}(z), f(z) are
, e z+ (21 + 1)ag; 0 =T
fl (Z) = Cl M P4 I —X4(Z) . (I + /14) A4P4T
0 z— (21— 1)ag;
(83)
, e zZ + (2i + 1)083 0 _ —T
fz(Z) = C; M P4 | 7X4(Z) . (I —+ /14) A4P4T
0 z— (21— 1)ag;
Integrating (83), we arrive at expressions for f(z), f,(z)
fi(z) = C;'M'Py[d — (22 — )X (2)] (T + Ag) AP, T (&)

f2(z) = C;'M Pyl — (22 — )X ()| (T + As) AP, T

It is observed that the nature of the singularities in this speed regime is the same as that in the low speed
regime.

3.5. Extremely high speed regime

It can be easily checked that the following conditions hold for the components of M:
M < 07 My < O, MMy, > M122 (85)
Then ¢ in (27) can be explicitly determined to be

0= 7% + i84 (86)
where
1 1+ 25 M,
=—In——, I=——r—— (J4|<1 87
o 2n nl —;»5 > M11M22 (| ]| ) ( )
Now we introduce the following coordinate transformation:
h(z) = Psh(z), T;=AsP,T (88)
where
P. — M, /=My Ac — — 1 —1s 0 (89)
R [ A/ v vy e R 0 1+1s
Then (25) can be decoupled in the new coordinate system as
h*(x)+ Ash (x) =Ts, |x|<a (90)
where

e—2n64 0
As = |: 0 e2ns4:| (91)
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Consequently, the explicit expression of h(z) can be obtained as

z+ 2iag 0 1, =T
o) = Ps|1-xso)| o ey s 92)
where
—L_igy 7%+i84
Xoe) = | EF ) e, b 93)
0 (z+a) 7" (z—a) 7™
Applying (22), the explicit expressions for f)(z), f,(z) are
2i 0 —
fi(z) = C;'M Py [I — X5() [ A H (I+ A5) " AP T
0 z — 2lag, (94)
— 2i 0 —
f,(z) = C,'M 'Ps {I ~X:() [” e H (14 45) ' APLT
0 z — 2lagy
Integrating (94), we arrive at expressions for f,(z), f,(2):
fi(z) = C;'M'Ps[d — (2 — ) Xs5(2)] (I + As5) 'AsPLT %)

f2(z) = C;'M Psfd — (2 — ) Xs(2)] (1 + As) 'AsP, T

It is observed that the nature of the singularities in this speed regime is the same as that in the extremely low
speed regime.

4. Field components on the interface

The exact solution derived in the previous section can be expediently applied to extract field components
on the interface, which are listed for extremely low speed regime as follows:

e 03 and E; along the interface
032 N | 932 N
—F —E
B 1 [Mu 0
MMy —ML | 0 My

x + 2lag 0

(96)
e 03 and E; along the interface
{03, ] * Cas 0y x + 2iag 0
=Im

le'™M'P, [l —Xl*(x)[

1, =T
1) el 0 x — 2iae H(I_FAI) AR,
ipas L 1
M

— 00 < x < +400 (97a)
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S0 e
_ c 12 .
o a4 o2 — + 2iae 0 =
[ 31} ~ Im L oM Py {I—Xl_(x){x “ . ”(HAI) 'APIT
12 —ip®as L 0 x — 2iag
RE)
11 11
-0 <x<+00 (97b)

e 7, and D, along the interface

+ .
[gl] _ Im{Cl_lMll’l [I — X (x) [x + 2iag, 0 H I+ Al)_IAIETT}, —00 < x < +00

b 0 x — 2iag

(98a)

| IR e x + 2iag; 0 1, 5T _

] om0 Taearar) e o
(98b)

e Discontinuity in w and ¢ over the crack surfaces
w(x,07) —w@(x,07)]  1,, + 15 BT
) i) = -0 - P A A PT. N <a (99)

Differentiating (99) with respect to the x-axis, then densities of screw dislocations and electric charges are
distributed on the crack faces as follows:

b i " x + 2iag; 0 1. =T
[é] 72P1X, (x)[ 0 X Diae, ATAP T, |x|<a (100)
5. Results and discussions

5.1. A conducting crack moving in a homogeneous piezoelectric material

In this case C; = C, = C, as a result 6 = —1/2. The analytic functions f|(z), f3(z) defined in the upper
and lower half planes are

f(z) = £)(2) C1T<1 —%) (101)
zc—a
Tractions and tangential electric field are distributed on the real axis as follows:
o3| _ ko 03
[E]<¢x— NE% » K>a (102)

The stresses and electric fields exhibit inverse square root singularities near the crack tips. Then the intensity
factors for stresses and electric fields can be defined as
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K, =1lim+/2n(x — a)o3(x,0) = 655+/ma
Ki = lim+/2n(x — a)E (x,0) = E*\/na

which are just identical to Yoffe’s results (Yoffe, 1951). Discontinuity in w and ¢ over the crack surfaces can
be expressed as

(103)

Aole) = (2.0 = w2 (2,07) = s V=,
44EOC ¢ x| <a (104)
Ap(x) = 1 (x,07) = ¢¥(x,07) = —5 glzlczﬁ val -2,

It is observed from (104) that when the moving velocity is very near the Bleustein—-Gulyaev velocity, the
magnitude of Aw and A¢ will become considerably large. The asymptotic electroelastic fields near the right
crack tip can be expressed as

1 615KE ~ ﬂ e15KE 1 K k2 K
= cos(0/2) — cos(0/2) — —— sin(0/2) + sin(6/2
D= (6/2) = Vo (0/2) =1 Vo (6/2) + B—12 Vamr (0/2)
(105)
B K; x K K, B esKg . = B eisKe .
= cos(0/2) — —= cos(0/2) + sin(6/2) — sin(6/2
=58 vam O Tk v P e e O T e e )
(106)
- 1 eisKpcos(0/2) 1 K, sin(6/2) (107)
i p—Fk ¢u \2nr p—kcCu 2nF
- P K cos(0/2) B eisKg sin(0)2) (108)
PO B—Kew V2m  B—k w2
cos(0/2) 1 ek, sin(0/2)
D, = 1K - 109
: ﬂ—kfm o B—k2 Cu 2nr (109)
1 esK, cos(6/2) p sin(0/2)
D, = + K 110
TR ew owr  B-RE am o)
k> Kr ~ Kr k2 K, ~
E=——¢ cos(60/2) + cos(0/2) + sin(6/2
e O 5=k Vo O o o O
k2
——= sin(0/2 111
o e S0/ (1)
Ey=— P cos(0/2) + ke K, cos(0/2) pre K sin(6/2)
: p— k2 e15\/2nr B— k2 eis\2mr B — k2 \2n7
+ b Re sin(6/2) (112)

B— k2 \2nr
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where

r= \/m, 0 =tan! ()ﬁ)
e i () o

It is observed from (110) that the intensity factor for electric displacement is

Kp = lim /27(x — a)Ds (x,0) = % (114)

Then Kp goes to infinity when f# = k2 or V = cy,.

5.2. A conducting crack moving at the interface of two dissimilar piezoelectric materials

5.2.1. Speed regimes

The electroelastic constants for several commonly used piezoelectric materials are tabulated in Table 1.
The corresponding electroacoustic constants of these piezoelectric materials are shown in Table 2. It shall
be indicated that the bulk shear wave speeds for PZT65/35 and ZnO calculated by Li and Mataga (1996) are
incorrect. Table 3 presents two velocity parameters V; and ¥, for all of the possible material combinations
from the six piezoelectric materials. Observing Tables 2 and 3, we find that there exist only the first two
speed regimes for the piezoelectric composites PZT65/35 +ZnO and PZT-5+ ZnO. There exist the first
three speed regimes for the piezoelectric composites PZT65/35 4+ BaTiO;, PZT-5+ BaTiO;, and Ba-
TiO;3 + ZnO. There exist the first four speed regimes for the piezoelectric composites PZT65/35 + PZT-5,
PZT-5+ PZT-5H, PZT-4 + BaTiO;, PZT-4 + ZnO, PZT-5H + BaTiO;, and PZT-5H + ZnO. There exist all
the five speed regimes for the piezoelectric composites PZT65/35+ PZT-4, PZT65/35+ PZT-5H, PZT-
5+ PZT-4, and PZT-4 + PZT-5H. In the next subsection, the piezoelectric composite PZT-4 + PZT-5H,
which possesses all the five speed regimes, will be taken as a typical example to demonstrate the effect of
moving velocity on the singularities.

5.2.2. Singularities

Fig. 2 illustrates the effect of crack moving velocity ¥ on the singularities for piezoelectric composite
PZT-4 + PZT-5H. The five speed regimes are separated by vertical dashed lines. When the crack moving
velocity increases within the extremely low speed regime, i.e., 0 <V <2257.9 m/s, the magnitude of the
oscillatory index ¢, for the singularities —1/2 + ig; will monotonically increase from 0.00296, just the value
for a static interface conducting crack (Wang and Zhong, 2002), to infinity. When the crack moving
velocity increases within the low speed regime, i.e., 2257.9 < V' <2333.9 m/s, the magnitude of the oscil-
latory index ¢, for the singularities —1 =+ ie; will monotonically decrease from infinity to zero. When the

Table 1
Material properties for several piezoelectric ceramics
Compound ca4 (10 N/m?) es (C/m?) e (107° F/m) p (10° kg/m®)
PZT65/35 3.890 8.387 5.66 7.825
PZT-5 2.11 12.3 8.1103 7.75
PZT-4 2.56 12.7 6.4634 7.5
PZT-5H 3.53 17.0 15.1 7.5
BaTiO; 4.4 11.4 9.8722 5.7

ZnO 4.247 -0.48 0.0757 5.68
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Table 2
Electroacoustic constants of several piezoelectric ceramics
Compound ¢4 (10'° N/m?) k. s (m/s) Cpg (M/s)
PZT65/35 5.1328 0.4921 2561.1 2484.9
PZT-5 3.9754 0.6850 2264.9 2000.0
PZT-4 5.0554 0.7026 2596.3 2257.9
PZT-5H 5.4439 0.5959 2694.2 2522.2
BaTiO; 5.7164 0.4799 3166.8 3081.7
ZnO 4.5514 0.2586 2830.7 2824.4
Table 3
7, and V5 of several piezoelectric composites (the first one is ¥}, and the second one is V5 in each element, unit m/s)
PZT65/35 PZT-5 PZT-4 PZT-5H BaTiO;
PZT-5 2183.7
2237.9
PZT-4 2409.6 2088.3
2398.2 2114.1
PZT-5H 2489.4 2095.5 2333.9
2499.1 2227.7 2399.1
BaTiO; 2519.9 2160.3 2434.1 2647.0
2561.1 2264.9 2583.3 2692.0
ZnO 2561.1 2264.8 2596.2 2694.2 2824.4
2561.1 2264.9 2559.0 2671.1 2830.7
C‘{’I‘) |:'| If’j CL;! s
1 T T - T T T T T
09 % 2
Extremely Low Speed {Intermediate; High Speed
ogk Low Regime Speed Regime
’ Speed Regime
Regime -1tie, -1tie
0.7 . i 2 3
-0.5+ig, -05+k

N

€, €,

1 1 1 1 1 1 1
2150 2200 250 2300 2350 2400 2450 2500 2580 2600
W(m/s)

Fig. 2. The effect of crack moving velocity on the singularities for piezoelectric composite PZT-4 + PZT-5H (the upper half-plane is
PZT-4, the lower is PZT-5H).

crack moving velocity increases within the intermediate speed regime, i.e., 2333.9 < V' <2399.1 m/s, the
magnitude of k for the singularities —1/2 £ £ will first decrease from 0.5 to 0.4136 for V' < 2365.2 m/s; then
it will increase from 0.4136 to 0.5 for V' > 2365.2 m/s. When the crack moving velocity increases within the
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Fig. 3. 03, just ahead of the right crack tip for three different crack velocities.

high speed regime, i.e., 2399.1 < V' < 2522.2 m/s, the magnitude of the oscillatory index &; for the singu-
larities —1 = ie; will monotonically increase from zero to infinity. When the crack moving velocity increases
within the extremely high speed regime, i.e., 2522.2 < V < 2596.3 m/s, the magnitude of the oscillatory index
&4 for the singularities —1/2 =+ ig; will first steeply decrease from infinity to 0.4234 for V' < 2580.4 m/s; then

it will gently increase from 0.4234 to 0.4846 for V' > 2580.4 m/s.

5.2.3. Electroelastic field on the interface
In this subsection, the material combination of PZT-4 + PZT-5H is also taken as an illustrative example

and only the extremely low speed regime 0< V' <2257.9 m/s is considered. The loading conditions are

V=2257.5m/s

V=2255m/s

R Il
N ——

Aw/ (CO)'o 32 * d)

PR

K 1
1 08 06 04 02 0 02 04

x/a

Fig. 4. Crack opening displacement Aw for three different crack velocities.
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Fig. 5. Ap = ¢(x,0%) — ¢(x,07) for three different crack velocities.

T= {_832]. Fig. 3 demonstrates the stress component o3, just ahead of the right crack tip for three

different crack velocities. It is observed that the stress oscillation becomes noticeable when the velocity is
very near the Bleustein—Gulyaev velocity c{)l; = 2257.9 m/s of PZT-4. Figs. 4 and 5 illustrate crack opening
displacement Aw and Ap = ¢(x,0") — @(x,07) for the three different crack velocities. It is found that the
magnitude of Aw and Ag will become relatively large when V' — c§g> = 2257.9 m/s. Aw and A¢ can be
negative as well as positive when V' — c{j) = 2257.9 m/s, also reflecting the serious oscillatory characteristics
near the crack tips. It is observed from Fig. 5 that Ag # 0 even though E}° =0, an exhibition of the
piezoelectric effect of the bimaterials. Noticing that the derivative of A¢ with respect to x is the density
of electric charges distributed on the crack faces, it can then be deduced from Fig. 5 that both positive and
negative electric charges are distributed on the crack faces.

6. Conclusions

A Yoffe-type conducting crack moving at the interface of two dissimilar piezoelectric materials is in-
vestigated. In the extremely low speed regime, the field components will exhibit the oscillatory singularities
0 = —1/2 £ igy near the crack tips; in the low speed regime, the field components will exhibit the singu-
larities 0 = —1 £ ig; near the crack tips; in the intermediate speed regime, the field components will exhibit
the real power type singularities 6 = —1/2 4+ k& near the crack tips; in the high speed regime, the field
components will exhibit the singularities 6 = —1 4 ig3 near the crack tips; in the extremely high speed re-
gime, the field components will exhibit the oscillatory singularities 6 = —1/2 + ig4 near the crack tips. This
phenomenon, in which the nature of the singularities relies on the crack moving velocity, is different from
the case of a moving insulating crack (Chen et al., 1998; Chen and Yu, 1999) or a moving permeable crack
(Li et al., 2000), in which stresses, strains, electric displacements, and electric fields possess the inverse
square root singularities near the crack tips. When a conducting crack runs in a homogeneous piezoelectric
material, the traditionally defined stress and electric field intensity factors are introduced to describe the
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singular field near the crack tips. It is found that stress and electric field intensity factors are independent of
moving velocity and the material constants, while the electric displacement intensity factor is dependent on
moving velocity and the material constants. The numerical results illustrate how the singularities at the

crack tips are varied as the crack moving velocity increases, and shows that field components will exhibit

violent oscillatory characteristics when V' — min{cfjg,cfg)}.
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